156 research outputs found

    Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Get PDF
    AbstractWinter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2=0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2=0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops

    Distributed hydrological modeling of total dissolved phosphorus transport in an agricultural landscape, part II: dissolved phosphorus transport

    No full text
    International audienceReducing non-point source phosphorus (P) loss to drinking water reservoirs is a main concern for New York City watershed planners, and modeling of P transport can assist in the evaluation of agricultural effects on nutrient dynamics. A spatially distributed model of total dissolved phosphorus (TDP) loading was developed using raster maps covering a 164-ha dairy farm watershed. Transport of TDP was calculated separately for baseflow and for surface runoff from manure-covered and non-manure-covered areas. Soil test P, simulated rainfall application, and land use were used to predict concentrations of TDP in overland flow from non-manure covered areas. Concentrations in runoff for manure-covered areas were computed from predicted cumulative flow and elapsed time since manure application, using field-specific manure spreading data. Baseflow TDP was calibrated from observed concentrations using a temperature-dependent coefficient. An additional component estimated loading associated with manure deposition on impervious areas, such as barnyards and roadways. Daily baseflow and runoff volumes were predicted for each 10-m cell using the Soil Moisture Distribution and Routing Model (SMDR). For each cell, daily TDP loads were calculated as the product of predicted runoff and estimated TDP concentrations. Predicted loads agreed well with loads observed at the watershed outlet when hydrology was modeled accurately (R2 79% winter, 87% summer). Lack of fit in early spring was attributed to difficulty in predicting snowmelt. Overall, runoff from non-manured areas appeared to be the dominant TDP loading source factor

    Distributed hydrological modelling of total dissolved phosphorus transport in an agricultural landscape, part I: distributed runoff generation

    No full text
    International audienceSuccessful implementation of best management practices for reducing non-point source (NPS) pollution requires knowledge of the location of saturated areas that produce runoff. A physically-based, fully-distributed, GIS-integrated model, the Soil Moisture Distribution and Routing (SMDR) model was developed to simulate the hydrologic behavior of small rural upland watersheds with shallow soils and steep to moderate slopes. The model assumes that gravity is the only driving force of water and that most overland flow occurs as saturation excess. The model uses available soil and climatic data, and requires little calibration. The SMDR model was used to simulate runoff production on a 164-ha farm watershed in Delaware County, New York, in the headwaters of New York City water supply. Apart from land use, distributed input parameters were derived from readily available data. Simulated hydrographs compared reasonably with observed flows at the watershed outlet over a eight year simulation period, and peak timing and intensities were well reproduced. Using off-site weather input data produced occasional missed event peaks. Simulated soil moisture distribution agreed well with observed hydrological features and followed the same spatial trend as observed soil moisture contents sampled on four transects. Model accuracy improved when input variables were calibrated within the range of SSURGO-available parameters. The model will be a useful planning tool for reducing NPS pollution from farms in landscapes similar to the Northeastern US

    A Discrete and Bounded Envy-free Cake Cutting Protocol for Four Agents

    Full text link
    We consider the well-studied cake cutting problem in which the goal is to identify a fair allocation based on a minimal number of queries from the agents. The problem has attracted considerable attention within various branches of computer science, mathematics, and economics. Although, the elegant Selfridge-Conway envy-free protocol for three agents has been known since 1960, it has been a major open problem for the last fifty years to obtain a bounded envy-free protocol for more than three agents. We propose a discrete and bounded envy-free protocol for four agents

    Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    Get PDF
    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2>0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3×3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands

    A latent trait look at pretest-posttest validation of criterion-referenced test items

    Get PDF
    Since Cox and Vargas (1966) introduced their pretest-posttest validity index for criterion-referenced test items, a great number of additions and modifications have followed. All are based on the idea of gain scoring; that is, they are computed from the differences between proportions of pretest and posttest item responses. Although the method is simple and generally considered as the prototype of criterion-referenced item analysis, it has many and serious disadvantages. Some of these go back to the fact that it leads to indices based on a dual test administration- and population-dependent item p values. Others have to do with the global information about the discriminating power that these indices provide, the implicit weighting they suppose, and the meaningless maximization of posttest scores they lead to. Analyzing the pretest-posttest method from a latent trait point of view, it is proposed to replace indices like Cox and Vargas’ Dpp by an evaluation of the item information function for the mastery score. An empirical study was conducted to compare the differences in item selection between both methods

    Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices

    No full text
    Crop residues serve many important functions in agricultural conservation including preserving soil moisture, building soil organic carbon, and preventing erosion. Percent crop residue cover on a field surface reflects the outcome of tillage intensity and crop management practices. Previous studies using proximal hyperspectral remote sensing have demonstrated accurate measurement of percent residue cover using residue indices that characterize cellulose and lignin absorption features found between 2100 nm and 2300 nm in the shortwave infrared (SWIR) region of the electromagnetic spectrum. The 2014 launch of the WorldView-3 (WV3) satellite has now provided a space-borne platform for the collection of narrow band SWIR reflectance imagery capable of measuring these cellulose and lignin absorption features. In this study, WorldView-3 SWIR imagery (14 May 2015) was acquired over farmland on the Eastern Shore of Chesapeake Bay (Maryland, USA), was converted to surface reflectance, and eight different SWIR reflectance indices were calculated. On-farm photographic sampling was used to measure percent residue cover at a total of 174 locations in 10 agricultural fields, ranging from plow-till to continuous no-till management, and these in situ measurements were used to develop percent residue cover prediction models from the SWIR indices using both polynomial and linear least squares regressions. Analysis was limited to agricultural fields with minimal green vegetation (Normalized Difference Vegetation Index < 0.3) due to expected interference of vegetation with the SWIR indices. In the resulting residue prediction models, spectrally narrow residue indices including the Shortwave Infrared Normalized Difference Residue Index (SINDRI) and the Lignin Cellulose Absorption Index (LCA) were determined to be more accurate than spectrally broad Landsat-compatible indices such as the Normalized Difference Tillage Index (NDTI), as determined by respective R2 values of 0.94, 0.92, and 0.84 and respective residual mean squared errors (RMSE) of 7.15, 8.40, and 12.00. Additionally, SINDRI and LCA were more resistant to interference from low levels of green vegetation. The model with the highest correlation (2nd order polynomial SINDRI, R2 = 0.94) was used to convert the SWIR imagery into a map of crop residue cover for non-vegetated agricultural fields throughout the imagery extent, describing the distribution of tillage intensity within the farm landscape. WorldView-3 satellite imagery provides spectrally narrow SWIR reflectance measurements that show utility for a robust mapping of crop residue cover
    • …
    corecore